

Final Technical Report Page -1-

3 Table of Contents

1. Introduction

3 2. Study Procedure 3

3. Model Definition 6

1 3.1 Processing Components 6

5 3.1.1 Overview of Datacomputer Processing Steps 8

3.1.2 Communications 10

3.1.3 Compilation 11

1 3.1.3.1 Parsing 13
.3.1.3.2 Expansion 14

3.1.3.3 Simulation 15

3.1.3.4 Code Generation 16

3.1.4 Execution 16

3.1.5 Storage Interface 18

3.2 Selection of Components in the Model 22

5 3.3 Query Classes 26
3.4 System Loading 27

1 4. Measurements 28
| 4.1 FC Measurements 28

4.2 WES Updates 38

1 5. Enhancement Recommendations 50

5.1 Enhancement Alternatives 50

5.2 Enhancement Implementation 54

6. Conclusions 65

1 References 66

GRvI
iii

I

A L ..
.

Final Technical Report Page -1-
Introduction Section 1

I

1. Introduction

This report sumnarizes a project entitled IThe Enhancement

j of Datamodule 11.0 The focus of this project is to study

the Datacomputer's [MARILL and STERN] performance in its

role as a datamodule in SDD-1 'POTNT* Pt =lI and as a

DBMS in other command and control applications. The goal

of this study is to produce a set of potential performance

1 enhancements and an analysis of their expected effect on

overall Datacomputer performance. Some of the proposed

Ienhancements would be subsequently implemented in the

Datacomputer.I
During the reporting period, the model of Datacomputer

performance constructed previously during this project was

used to analyze performance in the Advanced Command and

Control Architecture Testbed (ACCAT). The Datacomputer

was instrumented to produce extensive performance data at

runtime. The results of this work have indicated which

parts of the system are bottlenecks and this, in turn, is

suggesting potential enhancements. In addition, the

instrumented Datacomputer has been used in other

performance work for ARPA.

p7

Page -2- Technical Report
Introduction Section 1

The remainder of this report describes the study in

detail. Section two gives an overview of the study

methodology, section three describes the Datacomputer

performance model, section four describes the measurement

results and section five describes our enhancement

recommendations.

'I

I

I
iI

I

Final Technical Report Page -3-
Study Procedure Section 2

I
2. Study Procedure

I The study procedure we used is a formal analytic process

aimed at identifying request processing bottlenecks,

suggesting techniques to relieve these bottlenecks, and

evaluating the cost-effectiveness of the suggested

improvement techniques. The study procedure steps were:

1. Model building -- determining a simple picture of

SI the way the Datacomputer performs.

2. Requirements Analysis -- determining the

performance requirements of the command and control

11 comnunity.

3. Measurement -- calibrating the model with the

performance parameters of the current Datacomputer.

4. Sensitivity Analysis -- determining where the

I system bottlenecks are using the calibrated model

and the requirements analysis data.

5. Enhancement option generation -- proposing

candidate actions for improving performance.

!
I

'1 -

• L

Page -4- Technical Report
Study Procedure Section 2

6. Enhancement option analysis -- determining the

effects on the model of adopting each performance I
enhancement option.

7. Evaluation and recommendation -- recommending a

specific set of actions to be taken based on the

cost, flexibility, and effectiveness of each I
option. I.

During the reporting period, progress has been made in the

all steps of the study procedure. j

1. A model of the Datacomputer which represents the -

delay incurred by different components of the

Datacomputer under various classes of query traffic

and various system loads was constructed earlier in

this project and was used in the current analysis. i
2. Measurements have been made in the ACCAT to obtain

performance data for Datacomputer activities in a

command and control environment.

3. A version of the Datacomputer has been modified to

produce extensive performance data during request

processing. Performance measurements have been

made using this data.

Final Technical Report Page -5-
Study Procedure Section 2

4. The data from the measurements have been used to

I populate the model and to determine where the

system bottlenecks lie. f

5. Analysis of the data has led to a set of potential

I enhancements that will help Datacomputer

performance both in the SDD-1 context and in the

"stand-alone" context.

6. A version of the Datacomputer incorporating some of

the potential enhancements has been produced. Use

of this version of the Datacomputer has resulted in

performance improvements of between 1.2 and 3.5 in

a critical ACCAT application.

I
I

I
*I
I,* 1 ... • .'' - L , .

Page -6- Technical Report
Model Definition Section 3 1

3. Model Definition

A Datacomputer performance model which represents the [
delay incurred by each component of the system for each of j
several types of queries and under each of several system

loads has been defined. This model can be viewed as a i
3-dimensional matrix of the sort pictured in figure 3.1. 1
The first dimension represents major processing components

of the Datacomputer, the second dimension corresponds to j
different classes of queries, and the third dimension

represents different system loading conditions. I

3.1 Processing Components [
The first axis to parameterize is the Datacomputer

processing component axis. The components to be

represented must be meaningful in terms of the resources

used and the part they play in request processing. In

order to make this selection, an understanding of the

processing steps invoked by the Datacomputer while

handling a request is required. The next few sections

describe these steps.

J [I
) ," - m

Final Technical Report Page -7-
Model Definition Section 3
--I Datacoznputer Model Figure 3.1

L

1

I~D

D

0 D8a,_ _

[LI_ __ ___ __U_ _

i% D Qur630
Clase0 D------------I7

0

Page -8- Technical Report
Model Definition Section 3

3.1.1 Overview of Datacomputer Processing Steps I

In any database management system, a request must go 1.
through a language evaluation phase followed by execution

of the database operations requested. The Datacomputer's

data management functions are invoked by requests in a 1.
high level language called Datalanguage. Datalanguage has

facilities for storing, retrieving and updating data.

Data is stored by the Datacomputer in files whose [
descriptions are maintained in a system directory. Data

is transmitted to or from the Datacomputer through ports j
whose descriptions are also maintained in the system

directory. All requests, regardless of the operations to [
be performed, go through a compilation phase followed by

execution as illustrated in figure 3.2. In the following

sections, these phases are detailed with emphasis on I/O

anC other areas of potential delay. Also to follow is a

section on Datacomputer/user-job communications which I
impact all requests.

iI

Final Technical Report Page -9-

Model Definition section 3

Request Processing Component s Figure 3.2

1Data

network Dtlnug Descriptions

* network

COMPILATION Trail/
Log
Files

'Execut ion Code

network Drc

tory

network

Are

41' ___g

Page -10- Technical Report
Model Definition Section 3

i.
3.1.2 Communications

Although all database management systems communicate with

the end user, the Datacomputer is different in that the I
typical user of this system is a program running at some

other site on the Arpanet. All interaction between the

user program and the Datacomputer -- sending Datalanguage

requests, receiving Datacomputer responses, and

transferring data outside the Datacomputer -- takes place

over the network. Communication delays incurred over the

network tend to be much greater than those incurred on

single-site systems. Since the end user is another

process, the Datacomputer performs synchronization, error

reporting, prompting for actions etc., during the [
compilation and execution phases via network messages.

Each message is formatted with a prefix code and

human-readable text. The prefix code is designed to be

machine-readable so that the user process can make

decisions based on the message without having to parse a

human-readable string. The human-readable portion of the

messages is designed to provide the end user with a more

detailed description of what is going on.

I[

I iI;.. . ' '"

Final Technical Report Page -11-
I Model Definition Section 3

A record of all dialog in the users' sessions is kept in

audit trails and log files which the Datacomputer

maintains in the TENEX/TOPS20 file system. These files

are produced primarily for system maintenance purposes.

3If the Datacomputer exhibits unexpected behavior, the

1 audit trails and log files may be used to determine the

exact sequence of events that led to the problem

situation. Although these files do not require network

communication, they do incur additional formatting and

Jlocal I/O overhead.

3.1.3 Compilation]
The Datacomputer was designed to handle large files. Thus

the compilation phase of the system was designed with an

1 optimization phase which reduces the number of

I instructions executed for each record. While this

strategy yields overall savings when processing large

files, it may in fact slow down the processing of requests

involving small files, if the time to perform the

I optimization exceeds the savings gained.

I The process of compilation proceeds in four steps as

illustrated in figure 3.3. The parsing step reads in theI Datalanguage over the network. The expansion step adds

p1|

Page -12- Technical Report

Model Definition Section 3

Compilation Phase Figure 3.3

network IData Descriptions

Datalanguage I

Parsing

Syntax Tree

Expansion

'Intermediate Language

Simulation

l Operation Table

Code
Generation

Execution Code

--.1q

Final Technical Report Page -13-
Model Definition Section 3

loop control and inversion handling to the requested

I database operations. The simulation step optimizes the

I operations to be performed at each point based on

operations which have already been performed. The code

1 generation step selectively generates instructions to

perform the operations, eliminating all tests and

Ibranches based on information known at compilation time.

These steps are elaborated below.

1 3.1.3.1 Parsing

Syntactic and semantic analysis is performed as

Datalanguage is parsed and a syntax tree is built. The

data descriptions for all files and ports involved in the

request are utilized during semantic analysis. These

descriptions are accessed from the directory system at the

T time the file/port is opened and remain in core until it

is closed. The resulting syntax tree is an unambiguous

[internal representation of the request.

'!

Page -14- Technical Report
Model Definition Section 3

3.1.3.2 Expansion

The expansion step of compilation analyzes the syntax tree

and produces an internal structure named intermediate

language. The two most important functions of the

expansion step are to add looping and inversion handling

to the request.

The looping structure which will process a file or

port on a record by record basis is embedded within

intermediate language

All boolean qualifications on files are analyzed in

the light of inverted fields. The qualification is

broken into two booleans, one of which only

references inverted fields and one which cannot

utilize inversion. The 'inverted' boolean is used

at execution time to restrict the records which

fl will be accessed within the loop on the file. The

I'1 'non-inverted' boolean is then applied to all

records accessed within the loop.

All assignments to inverted fields are expanded to

update the inversion structure as well as the

database itself.

V
.I'

Pinal Technical Report Page -15-
Model Definition Section 3

1
1 3.1.3.3 Simulation

Central to the simulation process is optimization of

I execution code. During this phase, intermediate language

is transformed into a series of atomic operations which

A are entered into a table. The optimization at this levelL I is accomplished by simulating the runtime environment and

using the results of this simulation to produce the most

Iefficient sequences of atomic operations to handle each

intermediate language operation. Minimization of the

1 operations to skip from one field in a record to the next

is an example of the kind of optimizations produced in

this phase. Obviously these optimizations produce the

biggest payoffs when the code is executed many times or in

other words when large numbers of records are being

[processed.

[
[I

.1

[

[1

Page -16- Technical Report
Model Definition Section 3

3.1.3.4 Code Generation 1

Code generation is the final step of compilation. Each 1
entry in the operation table is converted into one or more

instructions. The thrust of code generation is to

eliminate as many tests and branches as possible from the [
final execution code. This is accomplished by performing

all possible tests based on information known at compile L
time, either generated by the simulation step or based on

field descriptions, and generating appropriate code based

on the result of the tests. This eliminates the need to

perform the identical tests at execution time for every

record when the results of the tests will not vary from

record to record.

3.1.4 Execution

Although the execution phase of request processing varies

with the mode of operation, each file and port referenced

in the request proceeds through seven basic steps as
illustrated in figure 3.4. The first step initializes

files and ports for data reading and writing. The second

it'
jt

Final Technical Report Page -17-
Model Definition Section 3I- --
Execution Phase Figure 3.4

Direc-

T ~Execution tr

network

AAre

R cessrcto

I network Iner

I Record&

* UDate/ut

n e t w o rr
m

IL 1 ecr
A'I' Inversion

Up-a./O-

Page -18- Technical Report
Model Definition Section 3

step restricts file access based on inversion. The third

through sixth steps comprise the looping mechanism and

perform the requested database operations on each record.

The seventh step performs the termination operations.

3.1.5 Storage Interface
1

The effect of data I/O throughout the execution phase of

request processing is directly related to the system's

storage techniques and the supporting hardware. This

section describes the Datacomputer's storage interface in

general terms and points out areas where systems using

different hardware may vary.

The Datacomputer maintains a system of maps that describe

the location, possibly on several storage devices, of

various versions of different parts of files. Files are

divided into sections. Each section is of logically

contiguous storage but may be several physically

non-contiguous storage extents.

For efficiency, the physical extents in which sections of

data are stored are made as large as can conveniently be

handled by the hardware configuration. If the hardware

supports it, this makes it possible to do track and

1

Final Technical Report Page -19-
Model Definition Section 3

cylinder at a time disk I/0 when moving an extent between

Isecondary and tertiary storage or copying an extent from
disk to disk.

The Datacomputer provides for multiple readers and one

updater of a file with each reader guaranteed to see a

consistent version of the file. When an updater of a file

modifies an extent, the change is made to a new copy of

that extent and thus requires copying data. Any reader

coming along in the meantime sees the file as it was

before it was opened for modification. If a serious error

occurs during the update, the modified extents will be

discarded and the file left unchanged for consistency.

LIf an update is successful, when the file is released by

[the updater the modified extents are logically merged into
the file. A new reader will see the modified file, but if

[the file is still being accessed by an old reader, the

[unmodified file is preserved.

All this is done with chains of maps that are maintained

[by the Datacomputer. There can be at most one update map

to modified extents followed by one or more read-only maps

and then the 'home' file map which is the map of all the

[file in its original quiescent state. Maps other than the

home file map may be incomplete and any missing parts are

Ifound by searching down the map chain (see figure 3.5).

I
'I

Page -20- Technical Report
Model Definition Section 3
-- -
Datacomputer Differential File Mechanism Figure 3.5

01~ ~~ ME ElF OE IE8 1 El Fl 7 fll

aEADu l EiCo lF AE. l S I C~ l

4 A Raadft I looks at 3 WOMaBt Ot A t-Il 4.9 Updater 1 moutas, ettts C and E 4.C UP11atat I closes I

T C T hTUPATIE 2 pF C3O2*f f~ MF . 302F G

R E A D E N 2 E A O E 2 v 1 C 2 I I E 2 T

HOME FILE - -E - -l HOME FILE Al 7 7l Cl0"lE OME FILE ~ 0 lF

BACKUP I ~ w BACKU Jef61101 Ell FtBACKUP IIl lEl

4,0 Reader2 Opens thefile 4 E Updltei,2 modifisasC.,,andF antdadds G J.F eAdap IEC1036

JAlI C31D2 521 F21GUt
HOME FILE IAIBIIC302EMF0

HIOWEFILE AIBIC IOE I1I "outEFILE JA I SQ01 F131 ACKUP AISIC3O #2E22

BCUBAeCKUP DlE EACKUP A ICo lF

4.0 tupliafa 2 and 'aeda 2 CIOt. 4,H The fitIs copbed tack .t The file 1 backead UP

-- - - - - - -- - - - - - - -- - - - - - - -- - - - - - -

Final Technical Report Page -21-1 Model Definition Section 3

Certain physical volumes of secondary storage are used

.exclusively for active extents of files for readers and

1writers as described above. In contrast, the home file

map may point to an area on a volume of tertiary storage

depending on the system hardware configuration. Copying

referenced extents from the home file to secondary storage

is referred to as staging the data. Although figures 3.3

" and 3.4 show that all data is staged, actually the data

- that is staged is configuration dependent. On

configurations not having a tertiary store, non-modified

data is read directly from the home file. Modified data

is written to the staging area and is eventually copied

back to the home file. Modified data is read from the

staging area until the copy back process takes place.

When disk space for active file extents gets crowded,

jmodified data must in general be copied back to the home

file and unmodified data can be discarded. On

I configurations having a tertiary store, a background task

within the Datacomputer periodically awakens and, if

[secondary storage is getting sufficiently tight, attempts

[to discard or copy back data to make more room. On

configurations not having a tertiary store, modified data

[is copied back when no jobs are using the file.

[

[
j -

Page -22- Technical Report
Model Definition Section 3

3.2 Selection of Components in the Model

During the first phase of this project, performance

measurements were carried out using queries on the

Bluefile database. The results of these measurements have

assisted us in modifying the selection of processing

components in the model. The current model consists of 32

different components.

Whereas some of these components correspond to those L
described above, others are not related to the kind of

component described above, but are components that

permeate the entire request processing activity. Also, F"
some of the measured components overlap each other. This

choice was made intentionally when it was desired to

capture the cost of an entire large component and also the

* costs of small individual parts of this component.

Specifically, the following components were selected for

the vertical axis of the matrix:

1. SV Calls -- The Datacomputer is logically divided

into two major components: RH and SV. RH is the

request handler and provides the interface between

the user program and a pseudo operating system, SV.

Final Technical Report Page -23-
Model Definition Section 3

SV provides the capabilities typically found in an

operating system such as an I/O interface, lock

arbitration, memory management etc. Whenever RH

calls a subroutine in SV it goes through a special

calling mechanism. This calling mechanism provided

a convenient place to monitor the time and

resources used in SV. Many other components are

subsumed in the SV calls component.

- 2. Error Calls -- Passing messages back to the user

program (for errors, status, synchronization etc.)

and maintaining audit trails and log files.

3. Wait Time -- Time spent waiting for new user input.

4. Syntax Analysis -- Lexical pass of compilation.

5. Context Recognition -- Parsing phase of

compilation.

6. Precompile -- The expansion phase of compilation.

S7. Compile -- The simulation phase of compilation.

8. Instruction Generation -- The instruction

generation part of compilation.

9. R Open Port -- Request handler part of opening a

port for user data.

*711

Page -24- Technical Report
Model Definition Section 3

10. RH Clean Up -- Code executed between end of

request or command and return to user.

11. IRFind -- Inversion set up.

12. Hunk Loop -- Inversion processing.

13. Net I/O -- Overhead in network I/O.

14. SV Open File -- Internally opening a file (happens

at the beginning of every request before file can

be used).

15. SDAX Open File -- That part of SV open dealing

with building a map.

16. RH Open File -- Time spent in the actual

Datalanguage OPEN command.

17. Page Read -- Datacomputer page reading subroutine. i;

18. Scratch Page I/O -- Writing and reading scratch

files during inversion processing.

19. Making a Page Read Only -- For

integrity/reliability reasons, directory pages are

kept read only most of the time.

20. Device Mount -- Primarily consists of opening the I
TENEX/TOPS20 files containg the Datacomputers Ii
databases.

Ii

Final Technical Report Page -25-
Model Definition Section 3

21. Buffer Allocation -- Manipulation of buffers in

the Datacomputer.

22. Making Page Writeable -- When a read only page

must be written, it is temporarily made writeable.

23. Tenex Read -- The TENEX/TOPS20 system call to read

a page.

24. Buffer Swap -- Swapping the postitions of two

buffers in core.

25. Page Write -- Datacomputer page write subroutine.

26. Tenex ITrite -- The TENEX/TOPS20 system call to

write a page.

27. Create Node -- Creating a directory node.

28. Create File/Port -- Creating a file or a port.

29. Generated Code Execution -- Executing code

produced by the compiler to answer the query

(includes hunk loop, page read/write etc.).

30. RH Close File -- Executing the Datacomputer CLOSE

command for files.

31. RH Close Port -- Executing the Datacompiter CLOSE

J]command for ports.

5
i,!t

Page -26- Technical Report
Model Definition Section 3 r
32. SV Close File -- Executed at the end of every

request using the file. I

The reasons for this selection of components will become

more apparent in the measurements section of this report.

3.3 Query Classes

I
During the first phase of this work, measurements were

primarily aimed at one set of queries. These were queries

generated by Ladder on the Bluefile database. Some j
measurements were also made during WES games but these

measurements were somewhat crude since we were unable to .

use the instrumented version of the Datacomputer.

The focus of the work reported herein is measurements

using the instrumented Datacomputer on Ladder queries to L
the FC (Fleet Commander) database and WES updates. These [
measurements were conducted at NOSC by members of the CCA

SDD-I/DM-l Enhancement team. These two kinds of

transactions were selected because of their obvious

relevance to the Command and Control community.

A

[I

[I
[I

I
Final Technical Report Page -27-
Model Definition Section 3

I
1 3.4 System Loading

Based on previous experience and interactions with NOSC,

we decided to emphasize paging as the important loading

factor in the model. Our previous measurements on the

1 Bluefile gave us strong evidence to back up this bias.

iThree levels of paging activity were chosen for the model:
- light -- essentially no page contention from other

jobs on the system.

-medium -- a moderate amount of paging produced by

one page-bound competing job on an otherwise empty

system.

- heavy -- a large amount of paging produced by two

i such jobs.

Higher levels of paging were investigated but did not

produce dramatically different results so they were left

out of the model.

I

Page -28- Technical Report
Measurements Section 4

4. Measurements

In order to make measurements of Datacomputer performance,

a version of the Datacomputer was modified to produce 1
statistical output at each significant step of processing.

These statistics included CPU utilization, real time)

elapsed and page faults for each step. In addition, a

series of programs were written to tabulate the data in

various different formats and compute average values where

appropriate.

4.1 FC Measurements

The first set of measurements were made on LADDER queries

to the FC database at NOSC. These queries had the

following characteristics in common:

- The files were relatively large. Many of the files

used had in excess of 10,000 records.

- Inverted access was used in most of the queries.

r$*.

I
Final Technical Report Page -29-
IMeasurements Section 4

- All requests were retrievals.

A total of fifteen different queries were measured and

Ianalyzed under the three different loading conditions

specified above. The results of the measurements

indicate that the queries fall into three interesting

1 broad catagories:

1. Queries that used an inverted retrieval to obtain a

small number of records (typically one). Eight of

the measured queries were of this type. These

queries will be referred to as restrictive inverted

queries for the rest of this report.

1 2. Queries that used inversion in a nested loop

(requiring the inversion to be set up each time the

loop was exectued). Three of the FC queries were

jof this type. These will be referred to as nested

inverted queries.

3. The remaining queries were non-inverted retrievals

that required linearly scanning files. These will

be referred to as linear queries.

The results of these experiments are presented in figures

4.1 through 4.3. Since the expense of each component

" I varies significantly for the different types of queries,

I
!

Page -30- Technical Report
Measurements Section 4

Percent Resource Utilization Figure 4.1

Restrictive Inverted Queries

Component Ligti
Real/CPU/Pgfl ts Real/CPU/Pgfl ts Real/CPU/Pgfl ts

SV calls 52 /49 /56 47 /49 /24 44 /50 /34
Error calls 4/ 5/ 2 3/ 5/ 1 2/ 5/ 3
Syntax analysis 13/ 3/ 2 9/ 3/ 2 I 11/ 4/ 7
Context recognition 2/ 1/ 3 2/ 1/ 4 1/ 1/ 3
Precompilation 6/ 5/ 9 8/ 5 /18 I10/ 7 /18
Compilation 11 /10 /16 13 /10 /30 20 /10 /20
Instruction generation 16 / 21 / 8 18/ 22 / 13 i10 / 20 / 13
RH open port 1/ 1/ 0 2/ 0/ 1 0/ 0/ 2
RH clean up 1/ 2 /1 I 2 / 0 2 /2
IR find 4/ 3/ 5 5/ 3/ 3 8/ 3/ 3
Hunk loop 3/ 3 /14 3/ 3/ 5 2/ 4/ 4
Net IO 12/ 3/ 0 8 8 3 0 6/ 3 1
SV open file 10 /13/ 5 10 /12/ 2 10 /12/ 7
SDAX open file 6/ 8/ 2 6/ 7/ 0 2/ 7/ 2
RH open file 14 /19/ 5 12 /17/ 2 12 /17 /10
Page read 8/ 4 /15 8/ 4/ 8 / 5/ 5
Scratch page 1/0 3/ 3 /31 2/ 2/ 8 I 1/ 2/ 4
Read-only page 6/10/ 0 6/10/ 0 i 1/0/ 0
Device mount 1/ 1/ 2 0/ 0/ 0 8/ 1/ 3
Buffer alloc/realloc 5/ 6/ 1 6/ 7/ 3 4/ 7/ 5
Writeable page 6/10/ 0 6/10/ 0 5 /10/ 4
TENEX read 7/ 3 /15 8/ 3/ 8 5/ 4/ 4
Buffer swap 0/ 0/ 0 0 0/ 0 0/ 0/ 0
Page write 0/ 0/ 0 0 0/ 0 0/ 0/ 0
TENEX write 0/ 0/ 0 0 0/ 0 0/ 0/ 0
Create node 0/ 0/ 0 0 0/ 0 0/ 0/ 0
Create file/port 0/ 0/ 0 0 0/ 0 0/ 0/ 0
Generated code execution 43 / 50 / 57 41 / 49 / 26 38 / 48 / 31
RH close file 4/ 7 /0 4/ 7 /0 3/ 6 /0
RH close port 0/ 0 /0 0/ 0 /0 0/ 0 /0
SV close file 3/ 5 /0 3/ 5 /0 3/ 5 /0

.EIT

.'

'I
Final Technical Report Page -31-

PMeasurements Section 4

Percent Resource Utilization Figure 4.2

I
' Nested Inverted Queries

Component L a
Real/CPU/Pgfl ts Real/CPU/Pgf its Real/CPU/Pgf its

SV calls 87 /85 /91 89 85 /94 80 /85 /78
Error calls 0/ 0 /0 0/ 0 /0 0/ 0 /0

1 Syntax analysis 0/ 0 /0 0/ 0 /0 0/ 0 /0
Context recognition 0 0/ 0 0 0 0 0/ 0/ 0
Precompilation 0/ 0 /1 0 0 / 0 0/ 0 /0
Compilation 0/ 0/ 2 0/ 0 1 0/ 0/ 0
Instruction generation 0/ 0/ 1 0/ 0/ 0 0/ 0/ 0
RH open port 0/ 0 /0 0/ 0 /0 0/ 0 /0RH clean up 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0IR find 31 /31 /27 35 /32 /37 32 /31 /30
Hunk loop 20 /20 /13 21 /19 /13 16 /19 /14
Net I/O 0/ 0 /0 0/ 0 0 /00 / 0

I SVopen file 0/ 0 /0 0/ 0 /0 0/ 0 /0
SDAXopen file 0/ 0 /0 0/ 0 /0 0/ 0 /0
RHopen file 0/ 0 /0 0/ 0 /0 0/ 0 /0
Page read 38 /33 /56 47 /34 /60 51 /33 /54

i1 Scratch page I/O 9/ 8 /50 I10/ 7 /47 6/ 8 /21
Read-only page 0/ 0 /0 0/ 0 /0 0/ 0 /0
Device mount 0/ 0 /0 0/ 0 /0 0/ 0 /0
Buffer alloc/realloc 3 /26/ 0 19 /26/ 0 12 /26/ 2
Writable page 0/ 0 /0 0/ 0 /0 0/ 0 /0
TENEX read 33 /28 /56 43 /29 /60 42 /28 /45I Buffer swap 0 0/ 0 0 0 0 I 0/ 0/ 0
Page write 0/ 0/ 0 0/ 0 0 0/ 0/ 0
TENEX write 0/ 0/ 0 0/ 0 0 0/ 0/ 0
Create node 0/ 0 /0 0/ 0 /0 0/ 0 /0
Create file/port 0 0/ 0 a 0 0 0/ 0/ 0
Generated code execution 98 /98 /92 98 /98 /96 97 /98 /97
RH close file 0/ 0/ 0 0/ 0 0 0/ 0/ 0I RH close port 0 0/ 0 0 0 0 I 0/ 0/ 0
SV close file 0/ 0 /0 0/ 0 /0 0/ 0 /0

I-
!1
!i

I

Page -32- Technical Report
Measurements Section 4

Percent Resource Utilization Figure 4.3

Linear Queries

Compnent Light Medium Heavy
Real/CPU/Pgf 1ts Real/CPU/Pgf 1ts Real/CPU/Pgf 1ts

SV calls 71 /63 /95 77 /63 /93 76 /63 /80
Error calls 0/ 0 /0 00/0 0/ 0 /0
Syntax analysis 0 0 /0 0 0 /0 0 0/0
Context recognition 0 /0 0 /0 /0 0 /0/0 .

4 Precompilation 0/ 0 /0 0/ 0 /0 3/ 0 /3
Compilation 0/ 0 /0 1/ 0 2/ 1 /4
Instruction generation 1/ 2/ 0 1/ 2/ 0 1/ 2/ 2 I
RH open port 0/ 0/ 0 0 / 0 0 0/ 0/ 0
RH clean up 0/ 0 /0 0/ 0 /0 0/ 0 /0
IR find 0/ 0 /0 0/ 0 /1 0 0 / 0
Hunk loop 0/ 0 /0 0/ 0 /1 0 0 / 0
Net I/O 1/ 0/ 0 0/ 0 0 0/ 0/ 0
SV open file 0/ 0 /0 0/ 0 /0 0/ 0 /0
SDAX open file 0/ 0 /0 0/ 0 /0 0 /0/0 1.
RH open file 1/ 1/ 0 / 1/ 0 2/ 1/ 2
Page read 45/ 28 /93 60 /29 /91 55 /29 /69
Scratch page I/O 0 0/ 0 0/ 0 0 0/ 0/ 0
Read-only page 0/ 0 /0 0/ 0 /0 0 /0
Device mount 0/ 0 /0 0/ 0 /0 0/ 0 /0
Buffer alloc/realloc 7 /11/ 0 5 /11/ 0 4 /10/ 1
Writeable page 0/ 0/ 0 0 / 0 0 0/ 0/ 2
TENEX read 41 /22 /93 56 /22 /91 49 /22 /66
Buffer swap 3/ 5 /0 2/ 5 /0 1/ 5 /0
Page write 0/ 0 /0 0/ 0 /0 0/ 0 0
TENEX write 0/ 0/ 0 / 0/ 0 0/ 0/ 0
Create node 0/ 0/ 0 0 / 0 0 0/ 0/ 0
Create file/port 0 /0/0 0 /0/0 0 /0/0
Generated code execution 93 /94 /97 93 /94 /94 88 /94 /85
RH close file 0/ 0 /1 0 0 / 0 2/ 0 /2
RH close port 0/ 0 /0 00/0 0/ 0 /0
SV close file 0/ 0 /0 0 /0 /0 2/ 0 /2

--- iU,

I

'1|

I
Final Technical Report Page -33-1 Measurements Section 4

three different tables are shown. In the tables, the rows

1 represent different processing components in the

Datacomputer. These correspond to the components

described previously although some were omitted since they

do not occur at all in these queries. Each major column

of the table represents a loading level. The numbers

separated by slashes indicate the percent of real time,

cpu time and page faults attributed to that component. It

is important to remember that components do overlap each

other so it is not unreasonable for the percentages to add

up to more than 100%.

The figures indicate that the bulk of resource utilization

occurs in different components for the different kinds of

queries. The restrictive inverted queries spend a large

percent of their time in overhead. In fact, 78% of the

I time is associated with compilation, network I/O and

opening and closing files. The nested inverted queries

Sspend a great deal of time actually processing data. This

includes a large amount of time setting up and processing'inversions (IR find and Hunk loop). A full 98% of the

time is spent in generated code which includes inversion

and data processing. The linear queries exhibit similar

[behavior in that most of the time (93%) is spent running

generated code. The difference is that the time is

I divided between reading data pages and examining the data

as opposed to processing inversions.

-TVI

Page -34- Technical Report
Measurements Section 4

Based on measurments made and reported in our previous

technical report [CCA], we know that a page read on

TENEX/TOPS-20 takes approximately 14 ms cpu time. This is

obviously an important factor in restrictive inverted

queries and nested inverted queries. Clearly, anything

that can be done to reduce the cost of a page fault or

reduce the number of page reads would be a desirable

enhancement.

The results from the first kind of query indicate that the

overhead of compilation and file opening and closing are

prime candidates for enhancement. Our Bluefile

measurements demonstrated that a significant part of the

time opening and closing files was spent making directory

pages read-only and writeable.

The previous set of figures do not give any indication of

either how much actual time is spent in the various f
components or how many times each component is actually

invoked. Figures 4.4 through 4.6 are resource usage

tables for one query in each group. They are included to

give a more concrete idea of the meaning of the

percentages. Ii

In the figures, the numbers in square brackets represent

the number of times the particular component was invoked

during the query. The numbers under the "Real" and "CPU"

I

- f '. -

Final Technical Report Page -35-
Measurements Section 4

Resource Utilization Figure 4.4

i

Restrictive Inverted Retrievals (light load)

C.mpenl Cals g±al1 CPU<%>

SV calls [61] 4197 <54> / 2360 <55> / 47 <29>
Error calls 8 8] 304 < 3> / 201 <4> / 1 < 0>
Syntax analysis [11 785 <10> / 174<4> / 2 < 1>

4. Context recognition 11] 134 < 1> / 84 < 1> / 3 < 1>
Precompilation [11 736 < 9> / 272 < 6> / 21 <13>
Compilation (11 856 <11> / 466 <10> / 47 <29>
Instruction generation [11 1082 <14> / 774 <18> / 32 <20>
RH open port [i] 295 < 3> / 97 < 2> / 4 < 2>
RH clean up [1] 104 < 1> / 102 < 2> / 0 < 0>
IR find 1 2] 318<4> / 123 < 2> / 5 < 3>
Hunk loop 1 21 305 < 3> / 136 < 3> / 8 < 5>
Net I/O [12] 684 < 8> / 98 < 2> / 0 < 0>
SV open file 1 2] 1565 <20> / 1024 <23> / 18 <11>
SDAX open file 1 21 990 <12> / 635 <14> / 9 < 5>
RH open file [21 1782 <23> / 1209 <28> / 19 <11>
Page read [8] 535 < 7> / 153 < 3> / 0< 6>
Scratch page I/O (12] 213 < 2> / 141 < 3> / 11 < 6>
Read-only page 119] 583 < 7> / 575 <13> / 0 < 0>
Device mount 1 61 471 < 6> / 309 < 7> / 7 < 4>I Buffer alloc/realloc [96] 405 < 5> / 261 < 6> / 6 < 3>
Writeable page [19] 553 < 7> / 550 <12> / 0 < 0>
TENEX read 18] 483 < 6> / 121 < 2> / 9 < 5>S Buffer swap [4] 14 < 0> / 14 < 0> / 0 < 0>
Generated code execution :1] 3918 <51> / 2375 <55> / 54 <33>

RH close file (2] 387 < 5> / 301 < 7> / 1< 0>
RH close port [1] 38 < 0> / 36 < 0> / 0 < 0>

I SV close file 2) 336 < 0 250 < 5> / 1< 0>

Total Request 11] 7635 / 4267 / 159

I

A
4

Page -36- Technical Report
Measurements Section 4

Resource Utilization Figure 4.5

K

Nested Inverted Queries (light load)

Compnt Cals el<%> CPU<%> ,g,.,<%
SV calls [35867] 723594 <87> / 601445 <86> / 1864 <98>

Error calls [8] 269 < 0>/ 164 < 0>/ 5 < 0>
WAIT TIME [11 3994 < 0>/ 76 < 0>/ 0 < 0>
Syntax analysis [11 571 < 0>! 120 < 0> 0 < 0>
Context recognition [11 135 < 0>/ 134 < 0> 0 < 0>
Precompilation [11 215 < 0>! 206 < 0> 0 < 0>
Compilation [11 638 < 0>/ 622 < 0> 2 < 0>
Instruction generation [11 1756 < 0> / 1585 < 0> / 2 < 0>
RH open port [11 103 < 0>/ 43 < 0> 2 < 0>
RH clean up 1 1] 267 < 0>! 120 < 0> 9 < 0>
IR find [74481 384655 <46> / 324444 <46> / 1017 <53> .
Hunk loop [3724] 28850 < 3> / 25358 < 3> / 1 < 0>
Net I/O i 11] 611 < 0> / 93 < 0> / 3 < 0> V
SV open file 1 21 603 < 0>/ 540 < 0> 1 < 0>
SDAX open file 1 2] 397 < 0>! 335 < 0> 1 < 0>
RH open file 1 21 1412 < 0>/ 884 < 0> / 5 < 0>
Page read [123801 351726 <42> / 258851 <37> / 1840 <97> j
Read-only page [15] 470 < 0>/ 456 < 0> / 1 < 0>
Device mount [3] 9 < 0> / 8 < 0> 0 < 0>
Buffer alloc/realloc [73336] 227168 <27> / 211002 <30> / 11 < 0> |]
Writeable page [15] 466 < 0> / 457 < 0> / 0 < 0> 1
TENEX read (123801 310046 <37> / 219323 <31> / 1840 <97>
Buffer swap 1 811] 3363 < 0> / 2515 < 0> / 0 < 0>
Generated code execution 1 1] 820930 <99> / 690140 <99> / 1873 <99>
R11 close file 1 2] 523 < 0>! 340 < 0>/ 13 < 0>
RH close port 1 1] 288 < 0> / 60 < 0> / 9 < 0>
SV close file 1 21 402 < 0>! 278 < 0> 9 < 0>

Total request 1 1] 824538 / 692953 / 1886

17T "a --

Final Technical Report Page -37-
Measurements Section 4

Resource Utilization Figure 4.6

Linear Queries (light load)

Component Calls CPU<%>

SV calls [1136] 54108 <72> / 34752 <65> / 1133 <91>

Error calls [9] 293 < 0>/ 189 < 0>/ 4 < 0>
Syntax analysis [11 1147 < 1> 167 < 0> 2 < 0>
Context recognition [11 170 < 0> / 91 < 0>/ 4 < 0>
Precompilation 1] 708 < 0> / 269 < 0> / 24 < 1>
Compilation [11 1695 < 2> / 636 < D>/ 39 < 3>
Instruction generation f 11 1539 < 2> / 1228 < 2> / 21 < 1>
RH open port [1] 120 < 0>/ 53 < 0> 2 < 0>
RH clean up [11 204 < 0>/ 114 < 0>/ 5 < 0>
NetI/O [14] 1135 < 1>/ 130 < 0> 3 < 0>
SV open file [2] 816 < 1> / 539 < 1> / 8 < 0>
SDAX open file [21 377 < 0>/ 316 < 0> 4 < 0>
RH open file [21 1144 < 1> 810 < 1>/ 10 < 0>
Page read 111071 33448 <44> / 16089 <30> / 1107 <89>
Read-only page 1 151 466 < 0>/ 455 < 0>/ 1 < 0>
Device mount [31 30 < 0> 11 < 0> 1 < 0>
Buffer alloc/realloc [44021 6615 < 8> / 6138 <11> / 6 < 0>
Writeable page 1 151 456 < 0>/ 453 < 0>/ 0 < 0>
TENEX read [1107] 29692 <39> / 12363 <23> / 1107 <89>
Buffer swap [10761 3288 < 4>/ 3270 < 6>/ 0 < 0>
Generated code execution [11 69144 <92> / 50262 <95> / 1141 <92>

: RH close file [2] 584 < 0>/ 341 < 0>/ 13 < 1>
RH close port [11 141 < 0>/ 52 < 0>/ 5 < 0>
SV close file [21 420 < 0>/ 279 < 0>/ 9 < 0>

Total request 1 1] 74646 / 52805 / 1236

-!

I

I!

! I

Page -38- Technical Report
Measurements Section 4

columns indicate the number of milliseconds spent in that

particular component and the numbers in the "Pagflts"

column represent the number of page faults taken in that

component. The numbers enclosed in angle brackets

indicate the percentage of the resource used by the

component. All of these tables correspond to queries

running in the lightly loaded situation.

The main conclusion that can be drawn from these results

is that performance is dependent on two factors: overhead

and processing time. Overhead is the critical factor in

relatively fast transactions and processing time is

important in transactions that reference large quantities

of data. The processing time component is also very much

influenced by the cost of page accesses in TENEX.

4.2 WES Updates

I.
WES is a war games program in use in the ACCAT. It can be

instructed to enter data into the Datacomputer as the game

proceeds. This usage of the Datacomputer is significantly

different from the usage previously described in the

following ways:

I

1
Final Technical Report Page -39-
Measurements Section 4

1 1. The files are very small.

12. Transactions include OPENs, CLOSEs, MODEs, UPDATEs

1 and APPENDs.

3. None of the files are inverted.

4. All requests are precompiled.

The precompiled requests that were measured were:

1. TVESASSIGN - This request copies data from the game

into a temporary Datacomputer file. The file is

initially empty.

2. LUPDTPOS - Updates the position of ships and

aircraft if they are already in the database.

3. LHIST - Add records for previously unreported ship

and aircraft to the trackhist file.

4 4. LPOSAPPEND - Append to the position file all

records not found in the LUPDTPOS request.

5. LUNITUPDATE - Update the unit file.

6. LCONT - Update the contact file.

7. LCASR - Update the casualty file and the readiness

./1 file.

J!F 4

Page -40- Technical Report

Measurements Section 4

A large quantity of data was collected during TES runs

under light and heavy system loading conditions. The

results of these measurements are summarized in figures

4.7 through 4.14.

IL

"Li
i. I

:, t

V1

'V V *

!
Final Technical Report Page -41-

* Measurements Section 4

Resource Utilization in WES Figure 4.7

~1

Request: UNITUPDATE Load: LIGHT

Services calls 326] 29689<76> / 23481<74> / 113<94>
Error calls 1 29] 1760< 4> / 1627< 5> / 6< 5>
Waiting time 6] 6416<16> / 292< 0> / 0< 0>
Syntax analysis [6] 13006<33> / 8061<25> / 69<57>
Instruction generation [6] 6463<16> / 6356<20> / 0< 0>
RH cleanup 1 6] 254< 0>/ 246< 0>/ 0< 0>
Network I/O 24] 522< 1> / 514< 1> / 0< 0>
Services Open File 18] 5934<15> / 5064<15> / 2< 1>
SDAX Open File 181 3750< 9> / 3105< 9> / 2< 1>
RH Open File 12] 6015<15> / 5349<16> / 14<11>

" Page Read 98] 5403<13> / 2000< 6> / 80<66>
Read Only Page 234] 9042<23> / 8623<27> / 0< 0>
Device Mount 27] 59< 0> / 59< 0> / 0< 0>

- Buffer Alloc/Pealloc 332] 1043< 2> / 1003< 3> / 0< 0>
Writeable Page 234] 9057<23> / 8168<25> / 1< 0>
Tenex Read 102] 4913<12> / 1086< 3> / 88<73>
Buffer Swap 38] 123< 0> / 123< 0> / 0< 0>
Page Write 12] 2845< 7> / 2305< 7> / 20<16>
Tenex Write 24] 352< 0> / 281< 0> / 12<10>
Generated Code Execution 6] 18771<48> / 16871<53> / 51<42>
RH Close File 12] 11571<29> / 10685<33> / 25<20>
Services Close File 18] 10751<27> / 9971<31> / 25<20>

Total Request [6] 38664 / 31702 / 120

I

Page -42- Technical Report
Measurements Section 4

Resource Utilization in WES Figure 4.8

Request: POSAPPEND Load: LIGHT

CmoetCalls Rel% CPU<%> Pgf si.

Services calls 1 5041 56936<75> / 44628<72> / 203<98>
Error calls [36] 1703< 2> / 1556< 2> / 2< 0>
Waiting time [6] 12< 0> / 12< 0> / 0< 0>
Syntax analysis [6] 16732<22> / 9346<15> / 101<49>
Instruction generation 1 61 15177<20> / 14304<23> / 0< 0>
RH cleanup [6] 495< 0> / 316< 0> / 2< 0>
Network I/O 24] 252< 0> / 152< 0> / 0< 0>
Services Open File 1 241 7801<10> / 6459<10> / 0< 0>
SDAX Open File [24] 5005< 6> / 4050< 6> / 0< 0>
RH Open File 1 18] 8668<11> / 7250<11> / 1< 0>
Page Read 1 132] 7092< 9> / 2585< 4> 91<44>
Read Only Page [438] 18693<24> / 16153<26> / 0< 0>
Device Mount 1 30] 73< 0> / 73< 0> / 0< 0>
Buffer Alloc/Realloc 1 3761 2193< 2> / 1225< 1> / 0< 0>
Writeable Page [438] 17121<22> / 15218<24> / 0< 0>
Tenex Read [204] 7506< 9> / 2128< 3> / 107<51>
Buffer Swap [20] 65< 0> / 65< 0> / 0< 0>
Page Write [48] 14596<19> / 12329<19> / 100<48>
Tenex Write 1 132] 2051< 2> / 1754< 2> / 84<40>
Generated Code Execution [6] 42896<56> / 37671<60> / 103<50>
RH Close File [18) 32806<43> / 29188<47> / 102<49>
Services Close File 1 24] 21992<29> / 19826<32> / 28<13>

Total Request [6] 75491 / 61825 / 206 [

K

qj

j.

I Final Technical Report Page -43-

Measurements Section 4

Resource Utilization in WES Figure 4.9

I Request: CASR Load: LIGHT

S Component Calls Rel% CPU<%> gts%

Services calls (331] 36819<79> / 27721<77> / 149<94>
Error calls [30] 1654< 3> / 1615< 4> / 2< 1>
Waiting time [6] 9027<19> / 539< 1> / 1< 0>
Syntax analysis [6] 13997<30> / 8271<23> / 72<45>
Instruction generation 1 6] 7310<15> / 6284<17> / 0< 0>
RH cleanup [6] 251< 0> / 246< 0> 1< 0>
Network I/O 1 24] 448< 0> / 443< 1> / 0< 0>
Services Open File [181 6689<14> / 5228<14> / 1< 0>
SDAX Open File [18] 4439< 9> / 3300< 9> / 1< 0>
RH Open File 1 12] 6090<13> / 5042<14> / 6< 3>
Page Read [79] 5001<10> / 1455< 4> / 59<37>
Read Only Page [2701 11396<24> / 10049<28> / 0< 0>
Device l.ount [24] 63< 0> / 63< 0> / 0< 0>
Buffer Alloc/Realloc 1 270] 891< 1> / 885< 2> / 0< 0>
Writeable Page [2701 10759<23> / 9543<26> / 1< 0>
Tenex Read [115] 6524<14> / 1254< 3> / 95<60>
Buffer Swap 1 14] 48< 0> / 47< 0> / 0< 0>
Page Write [24] 8273<17> / 6331<17> / 78<49>
Tenex Write [66] 1077< 2> / 1034< 2> / 42<26>
Generated Code Execution [61 24376<52> / 20815<58> / 84<53>
RH Close File 1 121 17730<38> / 15225<42> / 78<49>
Services Close File [18] 11771<25> / 10737<29> / 23<14>

Total Request 1 6] 46142 / 35809 / 157

-
I

I

III

Page -44- Technical Report
Measurements Section 4

Resource Utilization in TES Figure 4.10

Request: CONT Load: LIGHT

Component Calls Rel% CPU<%> ftS% I

Services calls (326] 35304<77> / 27809<75> / 154<95>
Error calls ! 301 1586< 3> / 1513< 4> / 3< 1>
Waiting time [6] 47< 0> / 46< 0> / 0< 0>
Syntax analysis [6] 11717<25> / 8092<21> I 75<46>
Instruction generation [6] 7751<17> / 7184<19> / 0< 0>
RH cleanup [61 399< 0> / 395< 1> / 0< 0>
Network I/O 24] 361< 0> / 330< 0> / 0< 0>
Services Open File 1 181 5594<12> / 5186<14> / 2< 1>
SDAX Open File f 18] 3643< 8> / 3307< 8> / 2< 1>
RH Open File 1 121 6012<13> / 5124<13> / 2< 1>
Page Read 1 74] 3945< 8> / 1302< 3> / 54<33>
Read Only Page [2701 10515<23> / 9950<26> / 0< 0>
Device Mount [24] 50< 0> / 51< 0> / 0< 0>
Buffer Alloc/Realloc [260] 985< 2> / 983< 2> / 0< 0>
Writeable Page [270) 10158<22> / 9412<25> / 1< 0>
Tenex Read [110] 5710<12> / 1169< 3> / 95<58>
Buffer Swap 1 14] 51< 0> / 51< 0> / 0< 0>
Page Write [24) 8845<19> / 6363<17> / 83<51>
Tenex Write [66] 1017< 2> / 959< 2> / 42<25>
Generated Code Execution [6] 25435<55> / 21173<57> / 87<53>
RH Close File [12] 18847<41> / 15517<41> / 85<52>
Services Close File [18] 12581<27> / 11143<30> / 25<15>

Total Request [6] 45476 / 37016 / 162

i~t V

Final Technical Report Page -45-
Measurements Section 4

Resource Utilization in WES Figure 4.11

4.

Request: UNITUPDATE Load: HEAVY

4. 'Copnn rl Ra l<> lA!k Rgla 3

Services calls 1 11] 35389<59> / 8550<73> / 244<59>
Error calls [9] 4879< 8>/ 572<4> 36< 8>
Waiting time 1 21 4619< 7> / 173< 1> / 14< 3>
Syntax analysis [2) 21083<35> / 3071<26> / 165<40>
Instruction generation 1 21 9975<16> / 2224<18> / 64<15>
RH cleanup [21 1931< 3> / 145< 1> / 13< 3>
Network I/O 1 81 1907< 3> / 197< 1> / 12< 2>
Services Open File [61 8937<15> / 1905<16> / 54<13>
SDAX Open File [6] 5895< 9> / 1149< 9> / 40< 9>
RH Open File [41 11246<18> / 2108<18> / 81<19>
Page Read [35] 8116<13> / 974< 8> / 77<18>
Read Only Page 1 78] 3794< 6> / 2956<25> / 1< 0>
Device Hount [111 408< 0> / 31< 0> / 4< 0>
Buffer Alloc/Realloc [120] 2068< 3> / 362< 3> / 17< 4>
Writeable Page [781 4106< 6> / 2851<24> / 13< 3>
Tenex Read [35] 6054<10> / 471< 4> / 57<13>
Buffer Swap [15] 49< 0> / 49< 0> / 0< 0>

* Page Irite 1 41 3596< 6> / 646< 5> / 18< 4>
Tenex Write 1 8] 271< 0>/ 110< 0>/ 8< 1>
Generated Code Execution 1 2] 24096<40> / 6182<52> / 156<37>
RH Close File [41 10832<18> / 3576<30> / 60<14>
Services Close File 1 61 10331<17> / 3390<28> / 56<13>

Total Request [2] 59260 / 11706 / 412

-I-

:I
41,

..1:. . -_j ..; : '
* 1, .._- I lli]L ' ,,.' '." -" i " ' ° : ' ...:

Page -46- Technical Report
Measurements Section 4

Resource Utilization in WES Figure 4.12

Request: POSAPPEND Load: HEAVY

Comnonent l Ra CPU<> RgfltsaCopnn al Rel% CPU<%> Pgf ..%

Services calls [172] 61556<69> / 16297<72> / 370<69>
Error calls [12) 8570< 9> / 744< 3> / 62<11> 1.
Waiting time [2] 5< 0> / 5< 0>/ 0< 0>
Syntax analysis 1 21 22651<25> / 3546<15> / 173<32>
Instruction generation [2] 12553<14> / 4801<21> / 64<11> $
RH cleanup [2] 2054< 2> / 128< 0> / 17< 3> £

Network I/O [8] 1495< 1> / 71< 0> / 12< 2>
Services Open File [8] 7086< 8> / 2336<10> / 44< 8>
SDAX Open Pile 1 8] 4949< 5> / 1431< 6> / 31< 5>
RH Open File [6] 11161<12> / 2615<11> / 66<12>
Page Read [48] 9847<11> / 1019< 4> / 78<14>
Read Only Page [146] 7338< 8> / 5598<24> / 2< 0>
Device Mlount 1 10] 374< 0> / 33< 0> / 4< 0>
Buffer Alloc/Realloc [144) 3187< 3> / 455< 2> / 25< 4>
Writeable Page [146] 9940<11> / 5368<23> / 23< 4>
Tenex Read [72] 12071<13> / 921< 4> / 98<18>
Buffer Swap [12] 38< 0> / 37< 0> / 0< 0>
Page Write [16] 14986<16> / 4472<19> / 94<17>
Tenex Write [44] 1146< 1> / 621< 2> / 35< 6> 1
Generated Code Execution [2] 49599<56> / 14072<62> / 268<50>
RH Close File [6] 33584<37> / 10488<46> / 182<33>
Services Close File [8] 20462<23> / 7132<31> / 87<16>

Total Request [2] 88465 / 22632 / 536 U

V- p

~f_

IT
Final Technical Report Page -47-

1Measurements Section 4
--
Resource Utilization in WES Figure 4.13

7
I Request: CASR Load: HEAVY

Component Ralls<%> CPU<%> gl s%
S I

Services calls [1121 36577<62> / 9892<76> / 249<59>
-. Error calls [101 6990<11> / 625< 4> / 51<12>

Waiting time [21 5059< 8> / 236< 1> / 20< 4>
Syntax analysis [2] 21339<36> / 3045<23> / 156<37>
Instruction generation [2] 10391<17> / 2124<16> / 64<15>
RH cleanup [21 1288< 2>/ 137< 1> 13< 3>
Network I/O 1 83 967< 1>/ 105< 0>/ 9< 2>
Services Open File 1 61 5709< 9> / 1818<14> / 35< 8>
SDAX Open File 1 6] 3892< 6> / 1137< 8> / 25< 5>
RH Open File 1 4] 7384<12> / 1754<13> / 54<12>
Page Read 1 281 7218<12> / 608< 4> / 53<12>
Read Only Page [90] 4018< 6> / 3423<26> / 1< 0>
Device Mount [8] 336< 0> / 26< 0> / 3< 0>
Buffer Alloc/Realloc [98] 1905< 3> / 322< 2> / 17< 4>
Writeable Page [901 3795< 6> / 3246<25> / 4< 0>
Tenex Read 1 401 6465<10> / 492< 3> / 57<13>
Buffer Swap [7] 24< 0> / 24< 0> / 0< 0>
Page Write 1 8] 5151< 8> / 2105<16> / 51<12>

. Tenex Write [22] 457< 0> / 295< 2> / 19< 4>
Generated Code Execution [2] 24317<41> / 7488<57> / 172<40>
RH Close File 1 41 15507<26> / 5329<41> / 107<25>
Services Close File [61 11446<19> / 3856<29> / 58<13>

Total R 2I 58932 12931 420£ Request

[
I
I

-- --------------- -------------

)!

Page -48- Technical Report
Measurements Section 4

Resource Utilization in WES Figure 4.14

Request: CONT Load: HEAVY

Copoen muCalls Real > CPU<!k [gls%

Services calls i 111] 37581<60> / 10003<73> / 236<59>
Error calls [10] 6349<10> / 717< 5> / 46<11>
Waiting time [2] 775< 1> / 34< 0> 1 10< 2>
Syntax analysis r 2] 19796<32> / 2996<22> / 138<34>
Instruction generation [2] 9554<15> / 2536<18> / 64<16>
RH cleanup [2] 1538< 2> / 143< 1> / 16< 4>
Network I/O 1 8] 1244< 2> / 207< 1> / 11< 2>
Services Open File [6] 6526<10> / 1878<13> / 38< 9>
SDAX Open File 1 6] 5091< 8> / 1209< 8> / 31< 7>
RH Open File 1 4] 8848<14> / 1894<14> / 63<15>
Page Read [27] 4697< 7> / 549< 4> / 48<12>
Read Only Page [90] 5079< 8> / 3425<25> / I< 0>
Device Mount [8] 119< 0> / 22< 0> / 1< 0>
Buffer Alloc/Realloc [96] 1865< 3> / 280< 2> / 17< 4>
Writeable Page [901 4789< 7> / 3288<24> / 14< 3>
Tenex Read [39] 6132< 9> / 454< 3> / 57<14>
Buffer Swap [7] 24< 0> / 24< 0> / 0< 0>
Page Write 1 8] 7778<12> / 2191<16> / 51<12>
Tenex Write [22] 769< 1> / 333< 2> / 17< 4>
Generated Code Execution [2] 30163<48> / 7775<57> / 173<43>
RH Close File [4] 19527<31> / 5461<40> / 101<25>
Services Close File [6] 12261<19> / 3919<28> / 52<13>

Total Request [21 61779 / 13527 / 398

--'1

1

Final Technical Report Page -49-

Measurements Section 4

This data leads to a number of conclusions concerning

i Datacomputer usage and performance in the WES environment:

1. Due to the small size of the files used by WES,

overhead assumes an even larger role in resource

utilization than in the FC requests.

2. One large overhead component deals with disk I/O.

Reading pages, writing pages, and changing the mode

of pages consume on the order of 30-50% of the CPU

and real time during typical WES requests.

3. Even though the requests are precompiled, syntax

analyisis and converting the precompiled request

into code consume around 40% of the real and CPU

Itime in many cases.

4. Net 1/0 and error calls account for significant

l amounts of real time in requests that do little

disk I/O such as MODEs and TWESASSIGN.

IJI
I

I
.3

3/

Page -50- Technical Report
Enhancement Recommendations Section 5

5. Enhancement Recommendations

The data obtained from these FC experiments and WES

experiments and also the previous Bluefile data has been

analyzed. The results of this analysis indicate that the

major factor limiting Datacomputer performance is

overhead. In most cases more time is spent in start up

and compilation of a request than in actual execution. In

addition, for requests that access large amounts of data,

the cpu overhead incurred on each I/O operation becomes

significant.

5.1 Enhancement Alternatives

Following is a list of potential enhancements aimed at

reducing request overhead. As shown in the following

section several of these enhancements have already been

implemented.

1. Dedicated Datacomputer disk -- The Datacomputer's

file system can be removed from the Tenex/Tops-20

file system. This will entail dedicating one disk

Final Technical Report Page -51-
Enhancement Recommendations Section 5

drive to the Datacomputer. Since the Datacomputer

already maintains its own file system, it currently

treats Tenex data files as logical disks. This

imposes a large quantity of additional CPU overhead

in dealing with data files. We estimate that

giving the Datacomputer a dedicated disk could cut

* the CPU time for disk I/O operations in half. This

enhancement would help FC retrievals primarily.

2. Removal of Directory Page Mode Changes -- This

enhancement involves trading off performance

against reliability. In the WES requests, a large

amount of both CPU and real time was spent changing

the mode of pages from read-only to writeable and

back. This is done to keep the directory pages

protected as much as possible. Experience has

shown that the Datacomputer has reached a degree of

reliability such that it is exceedingly unlikely

that any code will "accidentally" write a directory

page. In fact, the current system would get a

pager interrupt if it attempted to write a page

when it was read-only. This interrupt has never

occurred because of trying to write into a

directory page. Our measurements have shown that

changing the mode of a page is very expensive in

Tenex/Tops-20. It is obvious from the TES data

..

}A-

Page -52- Technical Report
Enhancement Recommendations Section 5

that this activity consumes a significant percent

of the CPU and real time used by the Datacomputer.

A dramatic decrease in the expense of these

operations could yield a speed-up factor as high as

two.

3. Inversion Improvements The Datacomputer's

inverted file mechanism was designed to handle

inversion of very large files. As a result, active

inversion information is always kept in temporary

disk files. This adds unnecessary overhead in many

cases where the inversion is small. This

enhancement entails modifying the inversion

algorithms to substitute in-core tables for disk

files whenever possible. This would improve

performance of inverted retrievals against small

databases like BLUEFILE.

4. Simplification of Buffer System -- The Datacomputer

employs a rather complex buffer management scheme

that includes numerous runtime checks to insure fl

that buffers are properly allocated/deallocated.

This includes making operating system calls to set

the access mode of unallocated buffers to "no

access". This was found to be an expensive

operation. Although these checks are useful in a

A A

1 Final Technical Report Page -53-
Enhancement Recommendations Section 5

test environment, they add unnecessary overhead

during normal system operation. Modifying the

1buffer system so that these run time checks can be

disabled will improve performance of small requests

1 and provide a significant improvement in

performance of the OPEN command.

5. Improving Precommilation -- The precompilation

I facility allows a user to partially compile a

Datalanguage request and store it away in the

Datacomputer. It can then be repeatedly invoked

1 and executed with substantial savings of the

compilation cost normally associated with a

jrequest. Although much of the compilation process

is skipped when a precompiled request is executed,

I the code generation step must still be performed.

i This enhancement would expand the precompilation

process to enable the generated code to be stored.

K' This would yield a large performance improvement in

the WES application which makes extensive use of

iprecompiled requests.

1 6. Reduce Page Load Sensitivity -- Our analysis has

indicated that Datacomputer performance is very

, sensitive to page loading. Several things can be

done to reduce this sensitivity. First, the size

41;

Page -54- Technical Report
Enhancement Recommendations Section 5

of the Datacomputer core image can be reduced by

renoving unnecessary subroutines. A number of

Datacomputer features including file groups, mass

memory interface and variable length strings are

not being utilized in the ACCAT. These features

could be removed without impacting Datacomputer

usage in the ACCAT. Second, subroutines can be

rearranged in the core image to improve locality of

reference. By loading subroutines that are

frequently executed together near each other in the

core image, the number of page faults incurred

during execution can be reduced.

5.2 Enhancement Implementation

At the end of July 1979, a new version of the Datacomputer

was installed at NOSC. It included the following

enhancments:

1. Dedicated Datacomputer disk -- The Datacomputer was

modified to access a dedicated disk outside of the

TENEX file system. This enhancement also requires

modification of the TENEX operating system to

provide the Datacomputer with direct access to the

- -. - ~

_____ ___ E ~

'1
Final Technical Report Page -55-1 Enhancement Recommendations Section 5

disk. These modifications will be made by NOSC

personnel. When this occurs, the new Datacomputer

will be able to be tested.

2. Removal of Directory Page Mode Changes -- The

directory pages mapped into the Datacomputer's core

image are kept in read/write mode and changing

their modes has been removed. As the WES

performance comparisons (figures 5.1 through 5.8)

indicate, this change has resulted in speedup

factors of between 1.5 and 3.5.

3. Simplification of Buffer System -- This change has

simplified the Datacomputer's buffer allocation and

deallocation algorithm. The performance data

indicates that this has decreased the time spent in

the buffer system.

4. Increase in Table Sizes -- Although this change did

not have an immediate performance affect, it will

provide for long-term improvements. NOSC personnel

ii have complained that the Datacomputer cannot handle

very large Datalanguage request due to table size

limits. This has forced them to split their

requests on a number of occasions. The table size

increase will permit larger requests to be written

LI with an accompanying performance enhancement.

dd1i ! _ _ _ __ _

Page -56- Technical Report
Enhancement Recommendations Section 5

Figures 5.1 through 5.8 summarize the results of these

enhancements to the VIES updates. .

1 Final Technical Report Page -57-
Enhancement Recommendations Section 5

Resource Utilization in VIES (Enhanced) Figure 5.1

I Request: UNITUPDATE Load: LIGHT

S Component calls Rpl% CPU<%> ftS%

Services calls [324] 9033<50> / 6813<45> / 71<95>
Error calls [29] 1640< 9> / 1500<10> / 0< 0>
Waiting time [6] 10869<61> / 512< 3> / 0< 0>
Syntax analysis [6] 4141<23> / 3084<20> / 41<55>
Instruction generation 1 6] 6890<38> / 6546<43> / 0< 0>
RH cleanup [6] 207< 1>/ 206< 1>/ 0< 0>
Network I/O 24] 553< 3> / 454< 3> / 0< 0>
Services Open File 1 18] 1025< 5> / 984< 6> / 1< 1>
SDAX Open File 1 18] 767< 4> / 728< 4> / 1< 1>
RH Open File [12] 2684<15> / 1929<12> / 9<12>
Page Read [96] 3284<18> / 1428< 9> / 54<72>
Read Only Page 1 234] 271< 1> / 272< 1> / 0< 0>
Device Mount 1 27] 66< 0> / 66< 0> / 0< 0>

- Buffer Alloc/Realloc [324] 454< 2> / 450< 3> / 0< 0>
Writeable Page f 234) 256< 1> / 256< 1> / 0< 0>
Tenex Read 1 1001 3098<17> / 1111< 7> / 56<75>
Buffer Swap [36] 141< 0> / 142< 0> / 0< 0>
Page Write[121 861< 4> / 695< 4> / 14<18>
Tenex Write 124] 286< 1> 282< 1> 12<16>
Generated Code Execution 6] 6302<35> / 4940<33>/ 33<44>

i RH Close File 1 121 2500<14>/ 2268<15> / 16<21>
Services Close File 11 2168<12> / 1950<13> / 16<21>

Total Request [6] 17794 / 14946 / 74

I

Page -58- Technical Report
Enhancement Recommendations Section 5

Resource Utilization in WES (Enhanced) Figure 5.2 I

Request: POSAPPEND Load: LIGHT

Component Calls Rel% CP<>P ~S%

Services calls [496] 17256<47> / 13014<44> / 168<98>
Error calls [36] 2073< 5> / 1780< 6> / 5< 2> J
Waiting time [61 12< 0> / 12< 0> / 0< 0>
Syntax analysis 1 6] 5755<15> / 3816<12> / 77<45>
Instruction generation 1 61 16184<44> / 14240<48> / 0< 0>
RH cleanup [6] 476< 1> / 246< 0> / 2< 1>
Network I/O 24] 215< 0> / 214< 0> / 0< 0>
Services Open File [24] 1279< 3> / 1173< 3> / 0< 0>
SDAX Open File [241 827< 2> / 746< 2> / 0< 0>
RH Open File [18] 2566< 7> / 2097< 7>/ 0< 0>
Page Read [124] 3471< 9> / 1661< 5> / 75<44>
Read Only Page [438] 597< 1> / 519< 1> / 0< 0>Device flount [30] 69< 0> / 67< 0> / 0< 0>

Buffer Alloc/Realloc (3441 661< 1> / 521< 1> / 0< 0>
Writeable Page [438] 506< 1> / 488< 1> / 0< 0>
Tenex Read [196] 4272<11> / 2133< 7> / 81<47>
Buffer Swap [12] 80< 0> / 80< 0> / 0< 0>
Page Write [481 5710<15> / 4206<14> / 90<52>
Tenex Write [132] 2122< 5> / 1599< 5> / 84<49>
Generated Code Execution [61 13599<37> / 11021<37> / 91<53>
RH Close File [18] 10053<27> / 8157<27> / 91<53>
Services Close File [24] 5386<14> / 4586<15> / 25<14>

Total Request 61 36374 / 29555 / 170

!
Final Technical Report Page -59-
Enhancement Recommendations Section 5
--

eResource Utilization in WES (Enhanced) Figure 5.3

I Request: CASR Load: LIGHT

Copnn CgfltS I

Services calls [3291 11293<56> / 8069<50> / 114<97>
Error calls [30] 1817< 9>/ 1582< 9>/ 0< 0>
Waiting time [6] 10731<53> / 480< 2> / 0< 0>

- Syntax analysis [6] 4670<23> / 3084<19> / 50<42>
Instruction generation [6] 6764<34> / 6502<40> / 0< 0>
RH cleanup [6] 201< 1> / 198< 1> / 0< 0>
Network I/O 24] 687< 3>/ 494< 3>/ 0< 0>
Services Open File [18] 960< 4> / 935< 5> / 0< 0>
SDAX Open File [18] 628< 3> / 607< 3> / 0< 0>
RH Open File [12] 1781< 8> / 1569< 9> / 4< 3>
Page Read [77] 2722<13> / 1062< 6> / 49<41>
Read Only Page [270J 322< 1> / 314< 1> / 0< 0>
Device Mount [24] 59< 0> / 60< 0> / 0< 0>
Buffer Alloc/Realloc [2621 394< 1> / 387< 2> / 0< 0>
Writeable Page [2701 290< 1> / 290< 1> / 0< 0>
Tenex Read [113] 4143<20> / 1240< 7> / 70<59>
Buffer Swap [12] 58< 0> / 57< 0> / 0< 0>

" Page Write [24] 3597<18> / 2258<14> / 63<53>
Tenex Write [66] 913< 4> / 879< 5> / 42<35>
Generated Code Execution [6] 7869<39> / 6159<38> / 67<57>
RH Close File [121 5768<29> / 4273<26> / 63<53>Services Close File [18] 2709<13> / 2339<14> / 17<14>

Total Request 1 6] 19874 / 16124 / 117

I
I

Page -60- Technical Report
Enhancement Recommendations Section 5

Resource Utilization in WES (Enhanced) Figure 5.4

Request: CONT Load: LIGHT

Component Calls Rel% CPU<%> 2gL

Services calls [324] 11064<50> / 8363<47> / 115<97>
Error calls [30] 1895< 8> / 1802<10> / 6< 5>
Waiting time 1 6] 65< 0> / 65< 0> / 0< 0>
Syntax analysis [6] 4570<20> / 3110<17> / 50<42>
Instruction generation [6] 8775<39> / 7644<42> / 0< 0>
RH cleanup [6] 216< 0>/ 201< 1> 0< 0>
Network I/O 24] 493< 2> / 467< 2> / 0< 0>
Services Open File [18] 1112< 5>/ 1046< 5>/ 0< 0>
SDAX Open File 1 18] 883< 4> / 817< 4> / 0< 0> !.
RH Open File [12] 1902< 8> / 1727< 9> / 0< 0>
Page Read [72] 2116< 9> / 1001< 5> / 45<38>
Read Only Page [2701 317< 1> / 316< 1> / 0< 0>
Device Mount [24] 48< 0> / 48< 0> / 0< 0>
Buffer Alloc/Realloc 1 252] 436< 1> / 405< 2> / 0< 0>
Writeable Page [270] 317< 1> / 287< 1> / 0< 0>
Tenex Read [108] 3283<14> / 1200< 6> / 71<60>
Buffer Swap [121 56< 0> / 55< 0> / 0< 0>
Page Write [24] 3292<14> / 2129<11> / 68<57>
Tenex Write [661 973< 4> / 857< 4> 42<35> 1
Generated Code Execution 1 6] 8095<36> / 6511<36> / 68<57>
RH Close File 1 12] 5841<26> / 4451<25> / 68<57>
Services Close File 1 18] 3263<14> / 2674<15> / 20<16>

Total Request 6] 22004 / 17784 / 118 Li

-

V [1

t H

Final Technical Report Page -61-
- Enhancement Recommendations Section 5

Resource Utilization in WES (Enhanced) Figure 5.5

Request: UtITUPDATE Load: HEAVY

Component C Ra<%, f

Services calls [III] 11825<58> / 2431<45> / 123<50>
. Error calls 1 91 1020< 5>/ 496< 9>/ 13< 5>Waiting time [21 8763<43> / 150< 2> / 15< 6>

Syntax analysis 1 2] 10192<50> / 1198<22> / 124<51>
Instruction generation [2] 5080<25> / 2174<41> / 60<24>
RH cleanup [2] 336< 1> / 75< 1> / 5< 2>
Network I/O 1 8] 322< I> / 174< 3>/ 2< 0>
Services Open File (6] 942< 4> / 330< 6> / 9< 3>
SDAX Open File 1 6] 869< 4>/ 257< 4> 9< 3>
RH Open File 1 4] 1821< 8> / 644<12> / 17< 6>
Page Read [351 3718<18> / 678<12> / 54<22>
Read Only Page [78] 97< 0>/ 89< 1> / 0< 0>
Device flount [11] 21< 0> / 21< 0> / 0< 0>
Buffer Alloc/Realloc [120] 328< 1> / 171< 3> / 3< 1>
Writeable Page 1 78] 136< 0> / 82< I> / 2< 0>
Tenex Read [35] 3559<17> / 514< 9> / 52<21>
Buffer Swap [15] 57< 0> / 57< I> / 0< 0>
Page Write [41 612< 3> / 189< 3> / 12< 4>

• Tenex Write 1 81 175< 0> / 102< 1> / 6< 2>
Generated Code Execution [2] 4617<22> / 1817<34> / 54<22>
RH Close File 4] 1785< 8> / 713<13> / 30<12>
Services Close File 1 61 1680< 8> / 608<11> / 30<12>

Total Request 1 2] 20264 / 5302 / 243

AAw
iL

[-~z;

Page -62- Technical Report
Enhancement Recommendations Section 5

Resource Utilization in TIES (Enhanced) Figure 5.6

Request: POSAPPEND Load: HEAVY

Services calls 1 172] 55978<74> / 5326<46> / 429<72>
Error calls [121 6525< 8> / 653< 5> / 69<11>
Waiting time [21 5< 0>/ 4< 0> / 0< 0>
Syntax analysis [2] 10764<14> / 1543<13> / 117<19>
Instruction generation [2] 9893<13> / 4753<41> / 51< 8>
RH cleanup [2] 1170< 1> / 124< 1> / 16< 2>
Network I/O [8] 429< 0> / 76< 0> / 7< 1>
Services Open File [8] 3277< 4> / 537< 4> / 61<10>
SDAX Open File 1 8] 2690< 3> / 420< 3> / 47< 7>
RH Open File [6] 12533<16> / 967< 8> / 138<23>
Page Read [48] 5725< 7> / 836< 7> / 77<13>
Read Only Page [146] 486< 0> / 179< 1> / 6< 1>
Device Mount [10] 82< 0> / 23< 0> / 2< 0>
Buffer Alloc/Realloc 1 144] 4506< 5> / 216< 1> / 10< 1>
Writeable Page [146] 844< 1> / 196< 1> / 9< 1>
Tenex Read [72] 20589<27> / 1004< 8> / 110<18>
Buffer Swap [12] 214< 0> / 50< 0> / 4< 0>
Page Write [16] 21453<28> / 1618<14> / 126<21>
Tenex Write [44] 1388< 1> / 558< 4> / 38< 6>
Generated Code Execution [2] 53142<70> / 4859<42> / 395<66>
RH Close File [6] 35070<46> / 3041<26> / 223<37>
Services Close File 1 8] 9299<12> / 1664<14> / 97<16>

Total Request [2] 75615 / 11394 / 590

""

-- --

VN- W

Final Technical Report
Page -63-

Enhancement Recommendations Section 5

--
Resource Utilization in WES (Enhanced)

Figure 5.7

Request: CASR Load: HEAVY

§=net als gaMCf!l- gffli,%

Services calls [1121 23314<69> / 3077<51> / 205<60>

Error calls [101 15035<44> / 609<10> / 37<10>

Waiting time t 21 3794<11> / 138< 2> / 17< 5>

Syntax analysis [21 11194<33> / 1314<22> / 173<51>

Instruction generation [21 6673<19> / 2125<35> / 60<17>

RH cleanup 1 21 609< 1> / 157< 2>! 8< 2>

Network I/O (81 1048< 3> / 158< 2> / 4< 1>

Services Open File 1 61 1121< 3> / 333< 5> / 21< 6>

SDAX Open File [61 809< 2> / 252< 4> / 15< 4>

RH Open File [41 1681< 5> / 483< 8> / 18< 5>

Page Read 1 281 6048<18> / 491< 8> / 49<14>

Read Only Page 901 100< 0> / 101< 1> / 0< 0>

Device nount g 81 117< 0> / 24< 0> / 3< 0>

Buffer Alloc/Realloc [98] 466< 1> / 200< 3> / 5< 1>

Writeable Page [90] 241< 0> / 99< 1> / 2< 0>

Tenex Read [401 4806<14> / 544< 9> / 61<18>

Buffer Swap 71 204< 0> / 28< 0>/ 2< 0>

Page Write 1 8] 2838< 8> / 715<12> / 41<12>

Tenex ,rite 1 221 351< 1> / 265< 4> / 16< 4>

Generated Code Execution 1 21 15005<44> / 2289<38> / 96<28>

RH Close File j 4] 12424<37> / 1449<24> / 73<21>

Services Close File [61 9995<29> / 841<14> / 41<12>

Total Request 1 2] 33520 / 5924 / 337

ii
- --------------------------------------

Ang

Page -64- Technical Report
Enhancement Recommendations Section 5
--
Resource Utilization in WES (Enhanced) Figure 5.8

Request: CONT Load: HEAVY

Copnn al el% CPU<%> Bgf2±s<

Services calls M 111] 23407<54> / 3273<48> / 238<56>

Error calls [10] 9607<22> / 740<10> / 56<13>
Waiting time [2] 337< 0> / 34< 0> / 10< 2>

Syntax analysis [2) 6405<14> / 1226<18> / 111<26>

Instruction generation [2] 6817<15> / 2558<38> / 69<16>

RH cleanup [2] 6271<14> / 149< 2> / 18< 4>
Network I/O 8] 510< 1> / 200< 2> / 10< 2>

Services Open File [61 9789<22> / 499< 7> / 63<15>

SDAX Open File [61 8455<19> / 398< 5> / 49<11>

RH Open File [4] 13447<31> / 735<10> / 103<24>

Page Read [271 2933< 6> / 388< 5> / 43<10>

Read Only Page [90] 1133< 2> / 105< 1> / 1< 0>

Device M!ount [8] 113< 0> / 17< 0> / 1< 0>

Buffer Alloc/Realloc [96] 484< 1> / 68< 1> / 6< 1>

Writeable Page [90] 286< 0> / 101< 1> / 4< 0>

Tenex Read (391 4023< 9> / 500< 7> / 53<12>

Buffer Swap [71 331< 0> / 34< 0> / 3< 0>

Page Write [8] 3186< 7> / 765<11> / 42<10>
Tenex Write [22] 370< 0> / 273< 4> / 16< 3>
Generated Code Execution 2] 22631<52> / 2706<40> / 207<49>
RH Close File [4] 7505<17> / 1634<24> / 88<20>
Services Close File [6] 4522<10> / 1023<15> / 50<11>

Total Request [2] 42847 / 6728 / 420

i--------------- --- ,u -- "I-" e. I1

Final Technical Report Page -65-
Conclusions Section 6

6. Conclusions

The instrumentation of the Datacomputer for this project

and the programs to analyze the resulting data have proved

very useful in determining the processing bottlenecks in

the Datacomputer. This analysis technique was also

utilized when the Datacomputer was being considered by the

Army in the Fort Bragg experiments. The tools enabled CCA

to produce results in a rapid fashion to questions about

Datacomputer performance.

The results of the experiments performed on WES requests

and the FC database in the ACCAT indicate that there are

few enhancements beyond the kind related to the reduction

of overhead that would further improve Datacomputer

performance in the ACCAT. However, careful analysis of

I. the final results of the measurement did yield a

1, | substantial improvement for a relatively small investment

of resources.

ii

I
K

Page -66- Technical Report

Ref erences

[CCA]
Computer Corporation of America, A Distribuited
Database M~anagenent System for Command and Control
Anplications: Semi-Annual Technical Renort_3,
Technical Report No. CCA-78-l0, Computer
Corporation of America, 575 Technology Square,
Cambridge, Massachusetts 02139.

[MARILL and STERN]
T. Marill and D. P.. Stern, "The Datacomputer: A
Network Data Utility", Proceedings AFIPS National
Computer Conference, AFIPS Press, Vol. 44, 1975.

[J.HI B. aR;thnie Jr., P. A. Bernstein, S. Fox, N.

Goodman M. Hamimer, T. A. Landers, C. Reeve, D.
Shipman, E. Wong "SDD-1: A System for Distributed
Databases", ACD.1 Transactions on Database Systems,
Vol. 5, No. 1 (March 1980), pp. 1-17.

* LT

